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Region or Global? A Principle for Negative
Sampling in Graph-based Recommendation
Zhen Yang, Ming Ding, Xu Zou, Jie Tang, Fellow,IEEE, Bin Xu, Chang Zhou, and Hongxia Yang

Abstract—Graph-based recommendation systems are blossoming recently, which models user-item interactions as a user-item graph
and utilizes graph neural networks (GNNs) to learn the embeddings for users and items. A fundamental challenge of graph-based
recommendation is that there only exists observed positive user-item pairs in the user-item graph. Negative sampling is a vital
technique to solve the one-class problem and is widely used in many recommendation methods. However, the previous works only
focus on the design of negative sampling distribution but ignore the sampled region for negative sampling. In this work, we propose the
Three-Region Principle to guide negative sampling, which suggests that we should negatively sample more items at an intermediate
region and less adjacent and distant items. In light of this principle, we present the RecNS method, which is a general negative
sampling method designed with two sampling strategies: positive-assisted sampling and exposure-augmented sampling. Instead of
sampling existing negative items from graph data, we merge these two strategies in embedding space to generate negative item
embeddings. Extensive experiments demonstrate that RecNS method significantly outperforms all negative sampling baselines, e.g.,
10.47% for PinSage, 6.02% for NGCF, and 8.20% for LightGCN in terms of Recall@20 on the Alibaba dataset.

Index Terms—Negative Sampling, The Three-Region Principle, Embedding Mergence, Graph-based Recommendation.
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1 INTRODUCTION

Recent years have seen research highlights of recommenda-
tion systems, evolving from collaborative filtering (CF) to
graph-based recommendation [1], [2], [3], [4], [5]. Graph-
based recommendation models user-item interactions as
a user-item graph and leverages graph neural networks
(GNNs) [6], [7], [8] to incorporate structural information
into user/item embeddings learning. Its key point is to learn
the high-quality embeddings and estimate the likelihood of
a user-item interaction with learned embeddings, which is
widely used for online shopping, social network, and adver-
tising. The rapid development of GNNs has been serving as
the fundamental driving force behind the rising of graph-
based recommendation. Notably, graph-based recommen-
dation has exhibited the potential to be the key technology
for the next-generation recommendation, facilitating web-
scale applications and thus showing a promising prospect.

However, there remains a crucial challenge that only
positive pairs are observed in the user-item graphs while
the other items are not connected to users that be regarded
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Fig. 1. An illustration of RecNS for merging positive-assisted sampling
and exposure-augmented sampling in embedding space.

as unobserved pairs. Seriously, the number of global unob-
served items is usually huge and the calculation of all the
unobserved pairs is impractical. Negative sampling is a vital
technique to address this issue.

Negative sampling has been widely adopted in previous
works [9], [10], [11], [12], the sampling strategy involves
only picking a small portion of negative items from the
global unobserved item region, and train models to sepa-
rate those negative items from positive ones. The negative
sampling strategy accelerates the training process and re-
duces computational complexity, making it possible for a
large-scale graph-based recommendation. Besides, results
in several studies [8], [13] demonstrate that the quality
of negative items does affect the user/item embedding
qualities and the effectiveness of the recommendation task.
[14] studies the difficulty of negatives for learning useful
representations and finds that just the hardest 5% negatives
are both necessary and sufficient for the downstream tasks.
Commonly, a classical strategy is to use a uniform distribu-
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tion for negative sampling [4], [15]. To improve the quality
of negative items, studies have attempted to design new
negative sampling distributions to sample hard (a.k.a diffi-
cult) negative items based on the current model [16], [17],
[18], in which the model would distinguish the differences
between positive and negative pairs at a finer granularity. In
graph-based recommendation, negative sampling strategies,
such as MCNS [19] and PinSage [1], sample the negative
items based on self-contrast approximation and Metropolis-
Hastings, or based on their PageRank scores respectively.
However, these works in graph-based recommendation only
focus on designing negative sampling distribution, ignoring
the choice of sampling region in the GNNs’ information
propagation mechanism.

Take LightGCN [4] for example, its experimental results
demonstrate that the performance begins to decrease after
reaching the peak point on layer 2 in most cases when the
layer number increases from 1 to 4. In response to these re-
sults, the authors claim that smoothing a node’s embedding
with its first-order and second-order neighbors is very use-
ful, but will suffer from over-smoothing issues when higher-
order neighbors are used. Actually, the over-smoothing is
inevitable when deepening the network layers but we can
design a more effective negative sampling method to further
improve recommendation performance. In this paper, we
utilize graph structure to sample negative items in terms of
structural similarities. In the user-item graph, the neighbors
in smaller hop have higher chances of being related to the
central node, which can improve performance by propagat-
ing information in smaller-hop neighbors. It shows that the
information propagated in smaller-hop neighbors is more
likely to be positive than negative for the central node. How-
ever, propagating information in the higher-hop neighbors
results in performance degradation, which illustrates that
these neighbors information is harmful to recommendation
performance. Based on the abovementioned observations,
negative items should be sampled from some specific re-
gion rather than the global unobserved region. Thus, we
propose the three-region principle to sample negative items
from the intermediate region, which provides a principle to
answer which region should be considered as the candidate
negative region. Next, we propose the negative sampling
method RecNS to design a negative sampling distribution to
sample negative items from the candidate negative region,
which supplies a method to answer how to sample negative
items. In summary, the three-region principle is a general
principle to guide the selection of candidate negative item
region, which leverages graph structure rather than over-
smoothing to sample negatives.
Contributions. In this paper, we propose the qualitative
Three-Region Principle to guide negative sampling, which
suggests that we should negatively sample more items at
an intermediate region for each user and less adjacent and
distant items. With the guidance of this principle, we present
an effective negative sampling strategy called RecNS to
sample hard negative items (See Figure 1), which can be
directly plugged into existing graph-based recommenda-
tion models, such as PinSage, NGCF, and LightGCN. To
mine hard negative items for graph-based recommenda-
tion, RecNS designs two strategies: positive-assisted sam-
pling (called RecNS-O) and exposure-augmented sampling

(called RecNS-W). In positive-assisted sampling, we balance
the influence between the central user and positive item on
negative sampling. In exposure-augmented sampling, we
incorporate exposure information into negative sampling.
Finally, we merge the positive-assisted sampling and the
exposure-augmented sampling in embedding space to gen-
erate the final negative item embeddings.

We conduct extensive experiments on two real-world
datasets with three representative graph-based recom-
mendation models. Experimental results demonstrate that
RecNS can achieve better performance by substituting the
default negative sampling strategy, such as the average
gains of 10.47% for Pinsage, 6.02% for NGCF and 8.20%
for LightGCN in terms of Recall@20 on the Alibaba dataset.

We summarize our key contributions as follows:
• Instead of sampling from the global unobserved item

region, we propose the Three-Region Principle to sample
negative items from the intermediate region for explor-
ing more informative candidate negative items.

• We present a novel RecNS method that merges the
positive-assisted sampling and exposure-augmented
sampling in embedding space to generate the final
negative item embeddings, which can be plugged into
graph-based recommendation models.

• Comprehensive experimental results demonstrate that
RecNS is superior to the existing negative sampling
strategies.

2 FRAMEWORK

In this section, we firstly elaborate on the proposed frame-
work SampledRec. Next, we review the overall process of
SampledRec. The typical flow of the SampleRec framework
is illustrated in Figure 2.

2.1 The SampledRec Framework

The proposed general graph-based recommendation frame-
work SampledRec consists of a GNNs-based encoder Eθ to
learn embeddings for items and users, a positive sampler Sp,
and a negative sampler Sn to sample positive and negative
items respectively for any given user (See Figure 2). The
sampled user-item interactions serve as the training data
for graph-based recommendation learning with stochastic
gradient descent (SGD) optimizer. After training, the recom-
mender system recommends the top K items with largest
Eθ(u) · Eθ(v) for a queried user.

2.2 GNNs-based Encoders.

GNNs-based encoders play a critical role in the SampledRec,
which can be briefly summarized as three modules.
Aggregation Module. We maintain an initial item and em-
bedding matrix EV ∈ RN×d and a user embedding matrix
EU ∈ RM×d. A look-up operation is applied to form an
initial embedding vector eu ∈ Rd (ev ∈ Rd), where d
denotes the embedding dimension. Intuitively, there are two
types of aggregation operations: item and user aggregations:

hu = Aggu←v(ev|v ∈ S(Nu)),

hv = Aggv←u(eu|u ∈ S(Nv)).
(1)
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Fig. 2. An illustration of general graph-based recommendation framework SampledRec. In the user-item graph, the user and item nodes are
connected to each other based on the records of interactions (such as interacted, exposed (i.e. exposed to the user but not interacted with)). In
many cases, positive pairs are sampled from direct edges in the graph and negative pairs are sampled from the global unobserved item region via
a pre-defined distribution, both of them composing the training data of graph-based recommendation systems.

where Nu/Nv denotes neighbors of the central user u/item
v. hu and hv are the aggregated embeddings for user u
and item v respectively. Aggu←v/Aggv←u is the user/item
aggregation function. S(·) represents neighbor sampler.
Propagation Module. To capture higher-order interactions
between user and item, we stack multiple propagation
layers to propagate embeddings layer by layer. Let hl

u/hl
v

represents user/item embedding at the l-th layer. The em-
beddings in (l + 1)-th layer depends on neighbor’s embed-
dings at l-th layer and its own embedding at l-th layer.
Mathematically, the user embeddings at (l+1)-th layer hl+1

u

can be defined as:

hl+1 = Aggu←v(e
l
v|v ∈ S(Nu)),

hl+1
u = f(hl+1,hl

u).
(2)

where f(·) is an update function. Similarity, the item em-
bedding vector at (l+1)-th layer also be represented by the
abovementioned propagation module.
Prediction Module. After propagating with L layers, we ob-
tain every layer representations {h1

u, · · · ,hL
u}/{h

1
v, · · · ,hL

v }
for the user u/item v, respectively. We utilize the representa-
tions of all layers to obtain the final user/item embeddings
e∗u/e∗v for prediction can be formulated as:

e∗u = g(h1
u, · · · ,hL

u ),

e∗v = g(h1
v, · · · ,hL

v ).
(3)

where g(·) denotes a fusion function.
Finally, we use the common way, inner product, to

estimate the user’s preference towards the target item:

r̂uv = e∗u · e∗v (4)

2.3 Samplers

Neighbor Sampler S . It is necessary to sample neigh-
bors for the central node to apply GNN for large-scale
graphs. GCN adopts the full neighbors for aggregation,
while PinSage samples fixed-size neighbors. FastGCN [20]
suggests sampling neighbors in each convolutional layer.
AS-GCN [21] proposes an adaptive layer-wise neighbor
sampling approach. Neighbor sampling is a vital technique
to counterpoise original graph information propagation and
computation efficiency.

Positive Sampler Sp. In SampledRec, edges in the user-item
graph can be assumed as positive user-item interactions.
Thus, the positive user-item interactions O+ can be defined
as O+ = {(u, v)|u ∈ U , v ∈ V}, where U indicates a set of
users and V denotes a set of items, each pair (u, v) indicates
a connected edge in the user-item graph.
Negative Sampler Sn. In SampledRec, we conduct a neg-
ative sampler Sn to sample negative items, that is, vn ∼
Sn(u, v). Although works on negative sampling have been
studied for a long time, they pay more attention to how
to design negative sampling distribution pn and ignore the
selection of the negative sampling region.

2.4 Optimization
In SampledRec, we choose the hinge loss to optimize the
parameters of the GNNs-based encoders, which is defined
on one-pair loss. Here, we extend the standard hinge loss to
k-pair loss, named as the augmented hinge loss, to enhance the
performance of graph-based recommendation. For a target
user u and the corresponding positive item v, we sample k
negative items vns to optimize the augmented hinge loss:

L =
1

k

∑
(u,v)∈O+

vn∼Sn(u,v)

[σ(
k∑

i=1

e∗u · e∗vi
n
)− σ(k · e∗u · e∗v) + γ]+. (5)

where {v1n, · · · , vkn} denote k sampled negatives, σ(·) is the
sigmoid function, [z]+ = max(0, z), γ is the pre-defined
margin satisfied γ > 0, O+ denotes the set of positive user-
item pairs, Sn(u, v) is the designed negative sampler.

3 THE THREE-REGION PRINCIPLE

In this section, we first introduce negative sampling problem
and analyze negative sampling in graph-based recommen-
dation. Next, we propose the three-region principle to guide
negative sampling and give the separating criterion. Lastly,
we discuss the proposed three-region principle, which is a
general principle to guide negative sampling.

3.1 Negative Sampling Problem
As demonstrated in the augmented hinge loss function (5),
the negative sampling plays a critical role in model training,
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which allows models to learn an appropriate boundary to
discriminate between positive and negative interactions. To
be specific, the negative sampler Sn samples negatives from
a designed distribution pn, where the negatives close to
positives (a.k.a hard negative items) enable the recommen-
dation models to achieve excellent performance. Several
attempts have been made to design more complicate neg-
ative sampling distribution pn to improve the estimation of
recommendation systems [16], [19], [22], [23], [24].

However, early attempts focus on seeking better nega-
tive sampling distributions to reduce estimation variance
in real-world graph data. Notably, the selected region of
negatives has not been fully explored. In this work, we seek
the selection of regions for negative sampling.

3.2 Analysis on Negative Sampling

In this subsection, we analyze negative sampling from it-
erative GNNs and variance perspectives. Iterative GNNs.
The idea of iterative GNNs is to propagate information
layer by layer in the user-item graph to generate user/item
embeddings. Notably, the number of propagation layers has
a huge influence on performance, whose results are revealed
in several papers [4], [15]. From the perspective of negative
sampling, the smaller hop of neighbors (from one-hop to
three-hop) indicates a positive preference, improving the
performance of graph-based recommendations. Here, we
use the social influence theory [25], [26] to explain why
the smaller hop of neighbors can improve the performance.
As well supported by the social influence theory, users
in social networks (a.k.a user-user social graph) would
influence each other, which leads to similar preferences.
Similarly, users interacting with the same item means that
these users belong to the same community and possess
the same preference. Hence, the two-hop neighbors can be
integrated into the central node to improve performance
(a.k.a u ← v ← u or v ← u ← v). Meanwhile, for three-
hop neighbors, take the central user u0 as an example (a.k.a
u0 ← v0 ← u1 ← v1), the central user u0 and its two-hop
neighbor u1 belong to the same community due to they all
interacted with the same item v0, and thus the u1’s one-hop
neighbor v1 would interacted by the central user u0 with a
high probability. However, the larger hop of neighbors (such
as four-hop or even five-hop) may demonstrate a negative
preference, which will degrade the recommendation perfor-
mance. Thus, the region for negative sampling should be
separated by the propagation mechanism in iterative GNNs.
Variance. Recently, a study on negative sampling for graph
representation learning (MCNS) [19] theoretically demon-
strates that the expected risk between expected loss J (θ∗)
and empirical loss J (θT ) satisfies:

E[||(θT − θ∗)u||2] =
1

T
(

1

pd(v|u)
− 1 +

1

kpn(v|u)
− 1

k
) (6)

where pd(v|u), pn(v|u) denote the estimated positive distri-
bution and negative distribution, respectively. T denotes the
number of sampled samples, where {v1, ..., vT } are sampled
from estimated pd(v|u) and {v′1, ..., v′kT } are sampled from
pn(v|u). k denotes the number of negative samples for each
positive user-item pair. This derivation suggests to sample
negative nodes positively but sub-linearly correlated to their

positive sampling distribution. i.e. pn(v|u) ∝ pd(v|u)α, 0<
α < 1. Hence, the order of magnitude of the expected
risk only negatively related to pd(v|u), and the user-item
interactions with high inner product score can be estimated
more accurately.

Based on the abovementioned theories, the suggested
way for negative sampling contains two steps: first, the
selected region for negative sampling should be determined
by iterative GNNs, namely the three-region principle; second,
the negative sampling distribution should be satisfied with
the expected risk. For the second step, we propose a nega-
tive sampling method called RecNS in Section 4.

Intermediate 
Items

Adjacent 
Items

Distant 
Items

Three-Region Principle 

Subgraph for a User Negative Sampling Regions 

SamplingTendency in Regions

Fig. 3. The subgraph for a user contains three types of items, represent-
ing three regions for negative sampling. This paper suggests to sample
negative items according to the Three-Region Principle.

3.3 The Three-Region Principle for Negative Sampling
Oriented to the property of the propagation mechanism of
GNNs in graph-based recommendation task, we propose
the three-region principle for negative sampling related to
any user u, where items are divided into three categories
(See Figure 3):
• Adjacent Region. The items in the adjacent region are

usually used for propagating feature information for the
central user u in graph-based recommendation. Therefore,
these items represent the positive preference of the user
and should not be sampled as negative ones. Besides,
according to equation (6), we need to keep pn(v|u)>0 to
guarantee the optimal eu ·ev(pd(v|u))<+∞. In summary,
these items are usually not taken into account in negative
sampling, so that overmuch negative sampling is not
meaningful either.

• Intermediate Region. Unlike adjacent items, these items
in the intermediate region are considered the positive-
likeness hard items that can bring more information for
model training. These intermediate items are a little far
away from the central user u, and will degrade (or slightly
improve) the recommendation performance when they
are used as adjacent items to propagate information in
the user-item graph. Compared with adjacent items, these
intermediate items have a limited improvement in perfor-
mance and sometimes even reduce the performance. In
addition, propagating these intermediate items into the
central node may lead to massive memory consumption
since the nodes’ size exponentially increases with the
number of propagated layers. Thus, intermediate items
should be sufficiently sampled as negatives to enhance
the negative sampling.

• Distant region. A distant item refers to those which
pd(v|u) is small. These distant items are usually far away
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from the central user and present highly irrelevant proper-
ties. Commonly, the central user tend not to interact with
these distant items so that the pd(v|u) (or eu ·ev) of these
items is small. However, in recommendation, we usually
care about top K items with the largest eu · ev . A small
pd(v|u) leads eu · ev to rapidly approach negative infinity,
making overmuch negative sampling on them futile. In
general, the distant items should be sampled less.

After clarifying the principle, there is still one unnegligi-
ble chasm before reaching a feasible algorithm: What is the
criterion for separating three regions?
Separating Criterion. As shown in the three-region princi-
ple, we present the separating criterion to divide all items
into three regions, which incorporates the structure of the
user-item graph. Specifically, for a user u and subgraph
as demonstrated in Figure 3, we leverage the Layer-wise
Breadth First Search (LBFS) to traverse the subgraph and
obtain the personalized items set. Here, we define the items
within a u’s khop-hop neighbors as the adjacent items
and the items outside u’s khop-hop neighbors as distant
items. Thus, the items in u’s khop-hop neighbors serve as
the intermediate items. Notably, the traversed separating
criterion involves the personalized regions for each user
and concerns the structure of the user-item graph, demon-
strating the diversity and personality. Here, we focus on the
generation for intermediate items due to the intermediate
region playing the decisive role for negative sampling. In
light of the three-region principle, we argue that the region
for negative sampling is intermediate rather than global. This
principle will be verified in Section 5.5 (Deeper Study). The
algorithm of LBFS is presented in Algorithm 1, where BFS
used in Algorithm 1 is shown in Algorithm 2.

Moreover, we also provide the matrix form to speed
up the construction of intermediate items. The khop-hop
neighborhood K is defined as K = Akhop, where A is
adjacent matrix of the user-item graph, and the nonzero cell
of K represents the intermediate items. In this paper, we fix
the khop as khop = 3 and khop = 5 for Zhihu and Alibaba
datasets respectively. Moreover, we also conduct an ablation
study about the selection of khop in Section 5.3.

3.4 Discussion on The Three-Region Principle

As presented in the above descriptions, the three-region
principle serves as a general principle to guide negative
sampling. Compared with the global unobserved items,
the items in the intermediate region provides more infor-
mative candidate negative items for model training. The
three-region principle eliminates the interference of non-
intermediate items and accurately samples candidate neg-
ative items from the intermediate region. In summary, the
three-region principle is a general principle for negative
sampling, which can be used for other existing negative
sampling strategies by replacing the global unobserved item
region with the intermediate region.

4 THE RECNS METHOD

In this section, we illustrate the proposed negative sam-
pling method RecNS, which is a general negative sam-
pling method that can be directly plugged into existing

Algorithm 1: The Layer-wise Breadth First Search
(LBFS)

Input: The User-Item Graph G = (U +V,O+), khop.
Output: The intermediate items region Rmed

for each user u do
hop num = 0, queue = [u].
while hop num ≤ khops do

y = BFS(G, queue).
queue = y.
hop num += 1.
if hop num == khop then
Rmed = y.

end
end

end

Algorithm 2: The Breadth First Search (BFS)
Input: The User-Item Graph G, queue.
Output: The layer-wise node set y
for each node in queue do

temp = queue.pop(0).
nodes = G[temp].
Add nodes to y.

end

graph-based recommendation models. RecNS designs two
strategies for negative sampling: positive-assisted sampling
(RecNS-O) and exposure-augmented sampling (RecNS-W),
and merges these sampling strategies to generate the final
negative item embeddings. The training flow of RecNS is
illustrated in Algorithm 3. Different from prior arts [9], [16],
[17], [19], [22], [23], where the region for negative sampling
is global (u’s unconnected edges in the user-item graph), the
RecNS samples negative items from the intermediate region.

4.1 Positive-Assisted Sampling(RecNS-O)
To obtain hard negative items, we present the positive-
assisted sampling strategy, in which the negative sampling
is performed with the assistance of positive items. To be
specific, for any given user u and the corresponding positive
item v, the negative sampling distribution for the user u is
determined by the user u and item v together, not only by
the user u [16], [19], [23]. From the user u, the sampled neg-
ative item vn reflects u’s negative preference. Meanwhile,
the negative one should possess a sufficient discrimination
ability to distinguish between positive and negative items
[24].

Inspired by the above studies, we introduce the idea of
positive-assisted sampling by combining the positive item
into the negative sampling distribution. We first follow the
convention [16], [27] to select M candidate negative items
from the intermediate regionRmed constructed by the three-
region principle to form the candidate items set Cu, where
M usually much smaller than the number of items in graph
data. Next, we apply the inner product score to approximate
the positive distribution and select the negative item from
the candidate items set Cu with the estimated negative
distribution pn. Here, the negative distribution pn is propor-
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Algorithm 3: The training process with RecNS
Input: The intermediate region Rmed, Encoder Eθ ,

Number of Negatives k.
while Early Stopping is not met do

Sample a mini-batch of positive pairs {(u, v)}.
Initialize loss L = 0.
// Negative Sampling via RecNS.
for each (u, v) pair do

// Positive-Assisted Sampling.
Get the candidate items set Cu from the
intermediate region Rmed by uniformly
sampling M candidates.

Get the sampled negative items set Pk by (7).
// Exposure-Augmented Sampling.
Get the self-amplified factor β by (9).
Get the candidate exposed items setMu from
the exposed items set Eu by uniformly
sampling M candidates.

Get the exposed negative item ven by (8).
// RecNS.
Merge the final negative embeddings by (10).
L = L+ max

(
0, e∗u ·e∗vn − e∗u ·e∗v + γ

)
end
Update θ by descending the gradients ∇θL.

end

tional to the positive distribution pd, which is the derivation
of MCNS [19]. Thus, we conduct the inner product score to
estimate the positive-assisted sampling distribution:

pn(v
p
n|(u, v))=

σ(α(e∗u · e∗vp
n
)+(1−α)(e∗v · e∗vp

n
))∑

vi∈Cu σ(α(e∗u · e∗vi)+(1−α)(e∗v · e∗vi))
(7)

where vpn is a sampled negative item from the distribution
pn, α is the assistance coefficient that balances the influence
between the user u and the corresponding positive item v.
Note that the assistance coefficient α is treated as a hyper-
parameter to tune manually. We will empirically discuss the
choice of distributions that assistance coefficient α obeys
in Section 5.3, such as uniform distribution and Gaussian
distribution.

In summary, the positive-assisted sampling enhances the
negative sampling by incorporating positive information
into negative sampling, which can help enforce the op-
timization process to exploit hard negative items for the
decisive boundary. Worthly, we use the augmented hinge
loss to optimize the parameters of the graph-based rec-
ommendation, where k negative items should be sampled
from the positive-assisted sampling distribution pn. These
k negative items can form a sampled negative items set
Pk = {vpn}.

4.2 Exposure-Augmented Sampling(RecNS-W)

We present the exposure-augmented sampling strategy
(RecNS-W) to sample negative items with the help of the
exposure information. The E-commerce platform possesses
the ability to collect exposure information, which is defined
as whether the recommended item has been exposed to the
user or not. Exposure information contains abundant in-

formation about the users’ negative preferences. Intuitively,
exposed but non-interacted items (abbreviated as exposed
items) reflect the user’s negative preferences compared with
the global unobserved items. Besides, the false negative
problem can also be alleviated with exposure information.
Some works suggest that sampling negative items from the
exposed items due to the exposed items possessing more
negative properties. However, the strategy of sampling neg-
ative items from exposed items may face sampling bias
since the exposed items themselves may be heavily biased,
resulting in suboptimal performance [28]. Thus, we incorpo-
rate the exposure information into negative sampling and
propose the exposure-augmented sampling to reduce the
sampling bias and enhance the quality of negative items to
lessen the false negative problem.

Specifically, for a user u and the corresponding exposed
items set Eu = {ve}, we first uniformly sample M exposed
items from the exposed items set Eu to form the candidate
exposed items set Mu. Next, we propose a self-amplified
factor β to augment the influence of exposure information.
Here we also utilize the inner product score to estimate the
user u’s preference over these M candidate exposed items
and sample the exposed negative item ven with the highest
score, which is similar to the hard negative sampling strat-
egy [16], [19]. Formally, the exposure-augmented sampling
strategy is implemented as:

ven = argmax
vi∈Mu

σ(β(e∗u · e∗vi)) (8)

where · denotes inner product, and β is the proposed self-
amplified factor. Recall that we only pick one exposed
negative item ven with the highest inner product score.

Here, we present the design of the self-amplified factor
β. The main idea of the self-amplified factor is to leverage
the sampled hard negative items in Cu to amend the inner
product scores for exposed items. This design prefers to
select exposed items that belong to candidate hard negative
items as the candidate exposed negative items, which can
correct the sampling bias problem caused by the exposed
items themselves. To be specific, for a user u and any an
exposed item ve in the candidate exposed items set Mu,
if ve belongs to the candidate items set Cu, the magnitude
of β would increase by one. Therefore, the magnitude of β
is determined by the number of exposed items in Cu. The
self-amplified factor β is demonstrated as:

β =

{
1, if ve not in Cu
number of exposed items, if ve in Cu

(9)

4.3 RecNS

In RecNS, the negative items are dependent on the above
two sampling strategies: positive-assisted sampling and
exposure-augmented sampling. Next, we introduce the
method to combine two categories of sampling strategies.
Essentially, the core idea of graph-based recommendation
is iteratively propagating the embeddings in the user-item
graph. Thus, we merge these sampling strategies in embed-
ding space. The merge operation can be implemented as:

e∗vn = merge
vp
n∈Pk

(e∗ve
n
, e∗vp

n
) (10)
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where vpn is sampled from the positive-assisted sampling
distribution pn and ven is picked from the exposure-
augmented sampling. Pk denotes the k negative items set
which is generated from pn. The merge operation merge(·)
can be implemented without supernumerary parameters,
in which the embeddings for vpn and ven can be directly
obtained from the GNNs-based encoder. Mathematically,
the merge operation can be formalized as:

merge(eve
n
, evp

n
) =

1

k
· eve

n
+ (1− 1

k
) · evp

n
(11)

where k is the number of negative items. Here, we don’t
need to involve supernumerary parameters to merge the
negative embeddings in embedding space, which is a non-
parametric merging process.

4.4 Discussion on RecNS

Universal Method. As presented in the above descrip-
tions, the proposed negative sampling method RecNS is
a universal method that can be plugged into graph-based
recommendation models. Besides, RecNS uses the positive-
assisted sampling to improve the quality of negative items,
which is widely applied in a set of graph-based recom-
mendation models. As for exposure-augmented sampling,
the E-commerce platforms also can gather the exposure
information to enhance negative sampling. In summary,
the proposed RecNS is a universal method for negative
sampling.
Embedding Mergence. Different from previous negative
sampling methods that sample an item from the user-item
graph, RecNS merges the negative embeddings between
the positive-assisted sampling and the exposure-augmented
sampling. Such a method merges the negative items in
embedding space, which truly combines these two candi-
date negative items and promotes the quality of negative
samples. In addition, the merge operation also provides
a new method to utilize multiple negative items for the
pairwise loss, that is, merging the embeddings of multiple
negative items into the compound embedding.

4.5 Time Complexity

The computational complexity of RecNS comes from two
parts. For positive-assisted sampling, the time cost is
O(Md), where M is the number of sampled candidates
in Cu, d represents embedding dimension. For exposure-
augmented sampling, the complexity is attributed to the
following two parts: (1) the computational complexity of
the self-amplified factor β. The time for this part is O(M).
(2) The time cost for sampling one exposed negative item
is O(Md). The total computational complexity of exposure-
augmented sampling is O(M + Md) Thus, the time com-
plexity of RecNS is O(Md).

4.6 Three-Region Principle And RecNS

In general, the negative sampling depends on two parts
from the perspectives of graph structure (iterative GNNs)
and variance. The three-region principle is a general princi-
ple that guides the selection of regions for negative sam-
pling; RecNS is a universal negative sampling method

that satisfies the expected risk. The three-region principle
provides an informative candidate negative item set while
RecNS provides an efficient negative sampling distribution
to sample negative items from candidate negative item set.

5 EXPERIMENTS

To demonstrate the effectiveness and adaptiveness of the
proposed RecNS, we conduct extensive experiments on two
datasets with three representative graph-based recommen-
dation models, such as PinSage, NGCF, and LightGCN.
Next, we conduct a series of parameter analysis. Lastly,
the deeper studies illustrate that why RecNS has superior
negative sampling ability.

5.1 Experimental Settings

Datasets. We evaluate RecNS on two datasets: Zhihu and
Alibaba datasets. For each user u, we randomly select 80%
of user’s interactions as the training set and use the next 10%
of interactions as the validation set for hyperparameters
tuning and early stopping. The remaining 10% interactions
are used as the test set to evaluate the performance. Some
statistics about these datasets are summarized in Table 1.
• Zhihu is a large QA website, where users click on in-

terested articles to read. Here, we use a public dataset
released in CCIR-2018 Challenge1, which contains both
article exposure information and user click information.

• Alibaba dataset collects user behaviors from the E-
commerce platform Taobao. We sample a subset of data
that contains users’ historical interactions, including posi-
tive interactions and exposure information.

TABLE 1
Statistics of the two real-world datasets.

Dataset # Users # Items # Edges # Exposure Density
Zhihu 16,015 44,175 3,284,734 3,796,551 0.00418

Alibaba 434,442 227,410 7,104,657 10,868,570 0.00006

Evaluation Metrics. We evaluate RecNS with three widely-
used Top-K evaluation metrics, including Recall, NDCG,
and HR, where K is set to 20. We report the average metrics
for all users in the test set and compute the metrics by
ranking all items that are not interacted by a user. Moreover,
the efficient similarity search technique Faiss2 is applied to
extract search for efficient inner products.
GNNs-based Encoders. To verify the adaptiveness of RecNS
to different genres of graph-based recommendation models,
we utilize three commonly-used models as the trainable
encoders for experiments.
• PinSage [1] utilizes the core idea of GraphSAGE [8] to

learn item embeddings in web-scale graphs. In our ex-
periments, we stack two aggregator layer to form infor-
mation propogation paths for a user or an item, such as
u ← v ← u and v ← u ← v. In addition, the mean-
aggregator is used in our experiments.

• NGCF [15] proposes a new recommendation framework
named neural graph collaborative filtering, which exploits

1. https://www.biendata.xyz/competition/CCIR2018/
2. https://github.com/facebookresearch/faiss
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the user-item graph structure by propagating embeddings
on it. This leads to the expressive modeling of high-order
connectivity in the user-item graph, effectively injecting
the collaborative signal into the embedding process in an
explicit manner.

• LightGCN [4] aims to simplify the design of GCN to make
it more concise and appropriate for recommendation.
LightGCN learns user and item embeddings by linearly
propagating them on the user-item interaction graph and
uses the weighted sum of embeddings learned at all layers
as the final embedding.

Baselines. To demonstrate the effectiveness, we compare
RecNS with different kinds of negative sampling meth-
ods, including includes static (UniNS and PopNS), heuris-
tic (DNS and SimNS), adversarial (AdvNS), MCMC-based
(MCNS), and SRNS strategies.
• UniNS [9]: Uniform negative sampling (UniNS) uses a

uniform distribution to sample negative items. It is an in-
dependent negative sampling strategy that can be applied
in various tasks, such as recommendation, information
retrieval, and graph representation learning.

• PopNS [29], [30]: Popularity-based negative sampling
(PopNS) samples negative items based on item popular-
ity: p(v|u) ∝ pop(v)α, where pop(v) denotes the popular-
ity of item v and α is a tuning parameter that affects the
performance.

• DNS [16]: Dynamic negative sampling (DNS) is the state-
of-the-art sampler, which adaptively samples negative
items scored highest by the current recommendation
model among some randomly selected items. Such nega-
tive ones is viewed as the hard negatives that can provide
a large gradient for training.

• SimNS [24]: Similarity-based negative sampling strategy
(SimNS) proposes a two-stage strategy to select informa-
tive negative items based on the distances between posi-
tive and negative items. This strategy takes into account
the influence of positive items on negative sampling,
which inspires us to incorporate the positive items into
negative sampling.

• AdvNS [17], [18]: Adversarial negative sampling strategy
(AdvNS), like IRGAN [17] and AdvIR [18], integrates the
recommendation model into a generative adversarial net-
work (GAN) where the generator performs as a negative
sampler to select better negative items for confusing the
discriminator (a.k.a recommendation model).

• MCNS [19]: Markov chain Monte Carlo negative sam-
pling (MCNS) proposes an effective and scalable negative
sampling strategy, approximating positive distribution
with self-contrast approximation and accelerating nega-
tive sampling by Metropolis-Hastings.

• SRNS [22]: empirically observes that only a few instances
are potentially important for model learning and samples
negatives with high-variance to tackle the false negative
problem.

Besides, we also evaluate RecNS in comparison with
three typical negative sampling strategies integrating with
exposure information, including ExpNS, MixedNS, and
RNS-AS.
• ExpNS: ExpNS is firstly proposed to serve as a negative

sampling strategy in MixedNS [31], which only selects

negative items from the exposed item set. Such a strategy
only focuses on exposure information but ignores the
unobserved items, leading to suboptimal performance.

• MixedNS [31]: MixedNS integrates view signal (a.k.a ex-
posure information) into negative sampling and designs a
view-enhanced sampler for BPR. A user-oriented weight-
ing strategy is considered during the learning process,
which utilizes different sampling weight ω to sample
exposed items and unobserved items.

• RNS-AS [32]: RNS-AS is applied to sample negative
items integrating with exposure data, which combines the
adversarial training and the feature matching together.
In RNS-AS, the generator samples negative items from
unobserved items and exposed items respectively, and
utilizes the reward to update the training parameters.

Parameter Settings. We implement RecNS based on Ten-
sorflow 1.14 and Python 3.73. The embedding size is fixed
to 64 for NGCF and LightGCN, while PinSage is set to
256. We use the Xavier method [33] to initialize embedding
parameters for all encoders. The two aggregation layers
with a fixed number of neighbors are applied for Pin-
Sage. The satisfactory performance of NGCF and LightGCN
can be achieved when the number of propagation layers
equals 3. We optimize all encoders with Adam [34] and
use the default learning rate of 0.001 for PinSage and
LightGCN, and keep the original learning rate of 0.0005
for NGCF. The L2 regularization coefficient is search in
{1e−6, 1e−5, · · · , 1e−2, 1e−1}, and set the optimum at 1e−3,
1e−4 and 1e−5 for PinSage, LightGCN and NGCF respec-
tively. The early stopping strategy is conducted, where we
stopped training if the Recall@20 on the validation set
increased for 10 successive epochs. The margin γ is set to
0.1 in the augmented hinge loss for all encoders. Moreover,
the number of negative items k is searched in [1, 5, 10, 15,
20], and the optimum is fixed as 15. Other parameters that
were not mentioned but used in the encoders remain the
default settings in the original papers.

5.2 Performance Comparison

Comparison with the State-of-the-Art Sampling Strate-
gies. We summarize the detailed performance comparison
among all negative sampling strategies on the Zhihu and
Alibaba datasets in Table 2, where we highlight the results
of best baselines (underlined) and RecNS (bold). Over-
all, RecNS brings about pronounced improvements on all
datasets in terms of three evaluation metrics. To demon-
strate the adaptiveness of RecNS, we apply RecNS into
three representative graph-based recommendation models
(PinSage, NGCF, and LightGCN). It is apparent that RecNS
can significantly boost the recommendation performance.
From Table 2, we have the following observations:
• RecNS consistently outperforms all baselines across three

classical GNNs-based encoders. In specific, RecNS accom-
plishes remarkable improvements over the best baseline
(SRNS) with the gains of Recall@20 by 8.28%, and 10.47%
in Zhihu and Alibaba with PinSage encoder, respectively.
These improvements are attributed to the following rea-
sons: (1) Through the three-region principle, RecNS is

3. Codes are available at https://github.com/zyang-16/RecNS.

https://github.com/zyang-16/RecNS
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TABLE 2
Results of RecNS with SOTA negative sampling strategies. All the numbers in the table are percentage numbers with ‘%’ omitted.

Methods
PinSage NGCF LightGCN

Zhihu Alibaba Zhihu Alibaba Zhihu Alibaba
Recall NDCG HR Recall NDCG HR Recall NDCG HR Recall NDCG HR Recall NDCG HR Recall NDCG HR

UniNS 2.42 2.72 34.55 3.02 1.34 4.58 3.78 4.31 46.95 3.71 1.72 5.31 4.32 4.92 50.47 5.43 2.45 7.60
PopNS 1.70 1.89 25.32 2.18 0.93 3.25 2.35 2.69 33.76 2.87 1.30 4.07 2.56 2.84 33.95 4.70 2.10 6.51
AdvNS 2.79 3.11 37.96 3.23 1.44 4.91 3.92 4.46 49.16 3.84 1.80 5.65 4.54 5.19 52.38 5.69 2.66 8.06

DNS 2.90 3.26 39.64 3.37 1.51 5.07 4.17 4.83 50.06 4.01 1.88 5.68 4.79 5.45 54.28 5.98 2.76 8.29
SimNS 2.94 3.28 39.51 3.40 1.52 5.07 4.09 4.67 49.71 3.84 1.79 5.48 4.49 5.21 52.70 5.91 2.76 8.21
MCNS 2.97 3.26 39.53 3.30 1.48 5.01 4.06 4.64 49.81 3.83 1.77 5.52 4.69 5.36 53.66 5.81 2.70 8.18
SRNS 3.26 3.74 42.87 3.63 1.65 5.29 4.24 4.90 50.66 4.32 2.01 6.04 4.83 5.45 55.14 6.34 2.99 8.80

RecNS 3.53 3.93 44.57 4.01 1.82 6.04 4.42 5.00 51.89 4.58 2.17 6.44 4.91 5.55 55.37 6.86 3.22 9.51

capable of exploring more informative candidate negative
items from an intermediate region rather than the global
unobserved item set. (2) The positive-assisted sampling
strategy integrates positive items into negative sampling
to balance the influence between the user and the positive
item for negative sampling and samples more discrim-
inative negative items to distinguish the positive and
negative items for any given user. (3) With the augmen-
tation of exposure information, RecNS can augment the
negative sampling. Such exposure information provides
the exposed items to reduce the sampling bias, further
improving the quality of negative items.

• UniNS and PopNS are static and global negative sam-
pling strategies and achieve poor performance on two
datasets regardless of any graph-based encoders used.
This indicates that these strategies usually cause non-
optimal results. AdvNS beats the conventional strategies,
like UniNS and PopNS. The reason is that the sampler
learns to fit the user’s preference distribution and adver-
sarially generates “difficult” items that contribute more
to training. Moreover, the recommender model gives a
reward to guide the sampler to select negative items.

• The heuristic negative sampling strategies, comprising of
DNS and SimNS, sample negative items based on the cur-
rent model with a higher estimate score or higher ranking
position. These sampling rules dynamically sample nega-
tive items based on current model along with the training
process, boosting the recommendation performance.

• MCNS achieves higher performance than AdvNS in most
cases. The reason is that the negative sampling distri-
bution in MCNS is positively but sub-linearly correlated
to positive distribution, which makes the deviation only
negatively related to positive distribution, meaning that
the inner products for high-probability negative items are
estimated more accurately.

• SRNS outperforms other baselines over three classical
graph-based models, which demonstrates that the impor-
tance of the false negative problem. SRNS selects items
with high-variance as negatives and achieves efficient
sampling of true negatives. Such sampling strategy en-
ables us to tackle the risk of false negatives and improve
the recommendation performance. Compared with SRNS,
RecNS achieves a significant improvement on the Alibaba
dataset. The reason is that RecNS utilizes exposure in-
formation to sample true negatives to alleviate the false
negative problem, and applies the three-region principle
to provide more informative candidates.

Comparison with Sampling Strategies Integrated with

Exposure Information. We also conduct the experiments
on three exposure-based negative sampling methods, in-
cluding ExpNS, MixedNS, and RNS-AS. In Table 3, we
summarize the performance comparison between RecNS
and other exposure-based negative sampling methods. It
can be seen through the results that RecNS is able to achieve
better performance than baseline sampling methods. A few
observations can be made as follows:
• It is obvious that sampling solely negative items from

the exposed items (ExpNS) will lead to the worst rec-
ommendation performance. Some possible reasons are:(1)
We can’t determine the origin of the exposed items,
which may belong to items that users dislike or that
users ignore due to quick browsing. It is not a reliable
negative signal by treating all exposed items as negatives,
which may result in empirical bias. MixedNS needs to
tune the sampling weight of ω between exposed items
and global unobserved items and lacks flexibility. RNS-AS
leverages exposure information and adversarial learning
framework to select informative and real negative items
adaptively and achieves better performance over other
exposure information-based negative sampling strategies.

• RecNS proposes the exposure-augmented sampling strat-
egy to incorporate the exposure information into negative
sampling. Here, we use a self-amplified factor to aug-
ments the impact of exposed items and pick the exposed
negative item with the highest inner product score. This
design prefers to select more informative exposed items as
the candidate exposed negative items. Besides, we merge
the positive-assisted sampling and exposure-augmented
sampling in the embedding space, which further enhances
the quality of negative items.

5.3 Parameter Analysis
Impact of the khop-hop. To verify the impact of separating
criterion khop in the three-region principle, we conduct an
ablation study by varying khop in the range of {3, 5, 7} to
generate various intermediate items as the selected region
for negative sampling. Note that we sample negative items
for each user u, and thus the khop’s neighbors of u must
belong to the item set. The experimental results are summa-
rized in Table 4. We can obtain the following observations:
• It can be found that khop-3 achieves the highest perfor-

mance on the Zhihu dataset, and the best performance on
the Alibaba dataset is implemented at khop-5. The possi-
ble reason is that heavy propagation for a dense dataset
makes its performance suffer from the degradation of neg-
ative preference. However, the degradation of negative
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TABLE 3
Results of RecNS with exposure-based negative sampling strategies.
All the numbers in the table are percentage numbers with ‘%’ omitted.

Methods
Zhihu Alibaba

Recall NDCG HR Recall NDCG HR

PinSage+ExpNS 0.30 0.30 4.33 0.35 0.12 0.43
PinSage+MixedNS 2.09 2.40 31.64 2.79 1.24 4.27
PinSage+RNS-AS 2.98 3.34 39.92 3.52 1.59 5.21
PinSage+RecNS 3.53 3.93 44.57 4.01 1.82 6.04

NGCF+ExpNS 0.43 0.48 6.72 0.23 0.11 0.32
NGCF+MixedNS 3.12 3.67 42.45 2.75 1.28 3.90
NGCF+RNS-AS 3.67 4.27 46.45 2.82 1.32 4.03
NGCF+RecNS 4.42 5.00 51.89 4.58 2.17 6.44

LightGCN+ExpNS 0.76 0.84 11.35 0.95 0.43 1.33
LightGCN+MixedNS 3.67 4.25 46.65 3.97 1.82 5.53
LightGCN+RNS-AS 4.25 4.92 51.24 4.17 1.91 5.83
LightGCN+RecNS 4.91 5.55 55.37 6.86 3.22 9.51

preference for a sparse dataset would be postponed until
the number of propagation modules reaches the optimum.

• Comparing different GNNs-based encoders, we can find
that the three-region principle is applied to the exist-
ing graph-based recommendation models, boosting the
quality of negative items. The selection of khop shows
consistency on various encoders, only demonstrating the
dependence of the density of datasets. Thus, a simple and
empirical separating criterion that khop serves as 3 for a
dense dataset and 5 for a sparse dataset, respectively.

TABLE 4
Impact of the separating criterion khop that proposed in the

three-region principle.

Zhihu Alibaba
Recall NDCG HR Recall NDCG HR

PinSage
khop-3 3.53 3.93 44.57 3.69 1.67 5.57
khop-5 3.26 3.60 42.48 4.01 1.82 6.04
khop-7 3.20 3.59 42.42 3.86 1.75 5.81

NGCF
khop-3 4.42 5.00 51.89 4.24 1.98 6.04
khop-5 4.18 4.74 50.07 4.58 2.17 6.44
khop-7 4.21 4.76 49.95 3.68 1.73 5.38

LightGCN
khop-3 4.91 5.55 55.37 6.16 2.89 8.53
khop-5 4.89 5.49 54.88 6.86 3.22 9.51
khop-7 4.67 5.31 53.27 6.45 3.02 8.60

Impact of the Number of Propagation Modules. We con-
duct an experiment to analyze the impact of the number of
propagation modules. We vary L in the range of {1, 2, 3, 4}
and demonstrate the results on NGCF and LightGCN in
Table 5. In most cases, the recommendation performance is
enhanced by increasing the number of propagation layers
from 1 layer to 3 layer. Specifically, RecNS-2 can achieve a
higher gain over RecNS-1, and the satisfactory performance
usually performs at RecNS-3 in most cases. However, the
performance of RecNS-4 drops compared with RecNS-3, the
reason explained in LightGCN is that smoothing a node’s
embedding with higher-order neighbors will suffer from
an over-smoothing issue. From the perspective of negative
sampling, propagating higher-order neighbors that present
the negative preference will degrade the performance.

TABLE 5
Impact of the number of propagation modules.

Dataset Zhihu Alibaba
#Modules Method Recall NDCG HR Recall NDCG HR

1 Module
NGCF 4.26 4.74 50.58 3.97 1.82 5.73

LightGCN 4.56 5.29 53.19 4.41 2.08 6.15

2 Module
NGCF 4.34 4.87 51.52 4.11 1.93 6.00

LightGCN 4.73 5.38 53.98 5.62 2.65 7.80

3 Module
NGCF 4.42 5.00 51.89 4.58 2.17 6.44

LightGCN 4.91 5.55 55.37 6.86 3.22 9.51

4 Module
NGCF 3.94 4.47 48.24 4.26 2.00 6.05

LightGCN 4.86 5.48 54.99 6.17 2.91 8.54

Impact of Number of Negative Items. To further investigate
the superior performance brought by the augmented hinge
loss. We visualize the convergence performance curve of
PinSage+RecNS with the number of negative items k in
Figure 4, and observe that increasing the k improves the
performance of recommendation, verifying the effective-
ness of the augmented hinge loss. It is observed that the
Recall@20 performance increases with a large k at first,
while performance begins to slightly decrease after reaching
the optimum. Sampling more negative samples always re-
duces the risk, leading to an improvement in performance at
first. However, performance begins to slightly decrease after
reaching the optimum because extra bias is added to the
objective by increasing k. In practice, although increasing
k enhances the recommendation performance, the training
time also increases. Thus, we set k = 15 to trade off the
recommendation performance and training time.

Fig. 4. Impact of number of negative items on the PinSage+RecNS.
Results on NGCF and LightGCN show the same trend, which are
omitted for space.

Impact of the assistance coefficience α. We conduct a
series of experiments to investigate the obeyed distribution
of assistance coefficience α. Here, we explore two classical
distributions that α obeys, including Gaussian distribution
N(µ, σ2) and Uniform distribution U(a, b). For Gaussian
distribution, we use two types of distributions: N(0, 1) and
N(0, 0.5). In addition, we fix the Uniform distribution with
a = 0 and b = 0.5, 1 to study. The results with Pin-
Sage+RecNS are presented in Figure 5. The default setting in
positive-assisted sampling is serve as uniform distribution
U(0, 1), which achieves the best performance in all datasets.
Compared with Uniform distribution, Gaussian distribution
N(0, 0.5) reaches the comparable performance in the Al-
ibaba dataset but performance slightly lower with N(0, 1).
In summary, the obeyed uniform distribution of α can leads
to better performance.
Impact of important hyperparameters. We investigate the
impact of most important hyperparameters, margin γ, em-
bedding dimension d, and the number of candidate items
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Fig. 5. Impact of the assistance coefficience α.

M . The results on the Zhihu dataset are reported in Figure 6.
The augmented hinge loss is correlated to the margin γ and
begins to come into effect when γ > 0. It is a disastrous
consequence to set the margin y ≤ 0, resulting in a zero
loss problem. Figure 6 illustrates that the augmented hinge
loss reaches its optimum at γ ≈ 0.1. We search embedding
dimensions in [64, 128, 256, 512, 1024, 2048] and keep the
default setting (d = 256) in our experiments to trade-
off performance and time consumption. Besides, we search
the number of candidate items M in the range of [5, 10,
20, 30, 50] and keep the default setting (M = 20) in our
experiments.

Fig. 6. Parameter analysis on PinSage+RecNS for the Zhihu dataset,
including margin, embedding dimension, and candidates number.

5.4 Deeper Study

5.4.1 Does The Three-Region Principle Improve Nega-
tive Sampling?
RecNS conditions on the three-region principle. But does
the principle help? To verify the impact of the three-region
principle, we design one extended experiment that samples
M candidates negative items from three regions, including
intermediate region, distant region, and global unobserved
region, termed as RecNS-Med, RecNS-Dis and RecNS-All
respectively. The experimental results are presented in Fig-
ure 7.

As demonstrated in Figure 7, only sampling from distant
region will lead to a catastrophic consequence, which illus-
trates that items in the distant region do not contribute pos-
itively to recommendation performance. Thus, we should
avoid sampling negatives from distant region. Similarly,
Sampling from the global unobserved region results in
performance degradation since the global region cannot
distinguish between intermediate and distant regions.

Fig. 7. The impact of the Three-Region Principle.

5.4.2 Does The Positive-Assisted Sampling Enhance
Negative Sampling?
To answer this question, we design the experiment about
sampling the hardest items in the training process. In prac-
tice, for any given user u, we approximate the hardest
negative item vn via sampling the highest inner product
score between the user u and candidate negative items. Note
that the hardest items are sampled by disabling the positive-
assisted sampling strategy of RecNS, termed as RecNSw/o p-a.
We conduct the above experiment on Zhihu and Alibaba
datasets. Figure 8 shows that sampling the hardest nega-
tive items will decrease recommendation performance, re-
sulting in false negative instances issue [35]. Some works
[1], [36] propose a simple workaround that only selects
hard negative samples but avoids the hardest ones. Similar
observations have also been discussed in previous related
works [22], [37], suggesting sampling negative samples with
both large scores and high variances to avoid false negative
instances. We sample hard negative items with a balanced
negative sampling distribution according to Equation (7),
avoiding sampling the hardest ones.

Fig. 8. The impact of the positive-assisted sampling strategy.

5.4.3 Does The Exposure-Augmented Sampling En-
hance Negative Sampling?
We conduct two experiments to verify the impact of
exposure-augmented sampling and represent the experi-
mental results on Recall@20 with LightGCN encoder in
Figure 9. The first experiment is to discard the exposure-
augmented sampling of RecNS, termed as RecNSw/o e-a.
As shown in Figure 9, removing the exposure-augmented
sampling decreases the recommendation performance, indi-
cating the importance of exposure information. Integrating
exposure information into negative sampling makes the
negative sampler can sample true negatives to alleviate
the false negative problem. Moreover, we also investigate
the impact of the number of sampled exposed negatives
on the Zhihu dataset with PinSage encoder and vary it
in the range of {1, 5, 10, 15, 20}. The experimental result
in Figure 9 demonstrates that sampling multiple exposed
negative items can’t improve recommendation performance
because the exposed items suffer from heavy biases. Thus,
we propose the self-amplified factor to enhance the influ-
ence of exposed items and pick the exposed negative item
with the highest inner product score as a negative one.

6 RELATED WORK

6.1 Graph-based Recommendation System
Recommendation systems have attracted a surge of atten-
tion because it is a core technology in many applications,
such as E-commerce and social media. Conventional recom-
mendation methods, e.g., collaborative filtering [38], matrix
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Fig. 9. The impact of the exposure-augmented sampling strategy and
the impact of number of sampled exposed negative items.

factorization [39], [40], [41] cannot applied in web-scale
recommendation system. With the rapid development of
deep learning, Graph-based models can be used for recom-
mendation systems. Yu et al. [42] proposed a linear model to
aggregate user and item embeddings based on meta-path in
heterogeneous information networks for recommendation.
Pixie [43] uses pixie random walks to generate ranking
scores by simulating random walks starting at the queried
node. PinSage [1] develops a Graph Convolutional Network
(GCN) to generate embeddings of users and items. Zhou et
al. [3] proposed a graph embedding method via random
walk with restart to capture asymmetric proximity. Wang et
al. [2] proposed two aggregation methods to integrate the
embeddings of items and the corresponding side informa-
tion for recommendation. GC-MC [44] employs one convo-
lutional layer to exploit the direct connections between users
and items. NGCF [15] devises a new framework, which
achieves the target by leveraging high-order connectivities
in the user-item interaction graph. LightGCN [4] proposes
two essential components, light graph convolution, and
layer combination, to decrease the training difficulty.

6.2 Negative Sampling in Recommendation
Negative sampling is an effective method to slove one-class
problem and speed up the training process in recommen-
dation system [1], [12], [45], [46]. Here, we divide existing
negative sampling methods into four categories and clarify
the differences between RecNS with related works.
• Static Sampler samples negative items from a fixed neg-

ative sampling distribution. BPR [9] adopted uniform
weights to sample negative items from missing data.
Popularity-based negative sampling strategy [13], [30],
[47] sampled negative items based on item popularity
distribution.

• Hard Negative Sampler adaptively samples the hardest
negative item based on the current recommendation mod-
els, which can accelerate the convergence compared with
static sampler. Rendle et al. [23] applied an adaptive and
context-dependent sampling distribution to oversample
top ranked items. Zhang et al. [16] proposed a dynamic
negative sampling (DNS) strategy that dynamically se-
lects negative items from the ranked list produced by
the current prediction model. CML [48] applied WARP
loss [49] to a collaborative metric learning model, which
uniformly sampled negative items within rejection. Tran
et al. [24] proposed a 2-stage negative sampling strat-
egy to find highly informative negative items. Instead of
sampling negatives from the global unobserved items in
the abovementioned negative sampling methods, RecNS
utilizes the three-region principle to sample negatives
from the intermediate region where can provides more in-
formative candidate negatives for model training. RecNS

is developed to serve the graph-based recommendation
and is a merge sampling method which generates the final
negative item embedding rather than a real negative item
from the raw data. Moreover, RecNS introduces the idea
of positive-assisted sampling by integrating the positive
item into negative sampling distribution.

• GAN-based Sampler utilizes generative adversarial
learning [50] to generate adversarial negative items. IR-
GAN [17] employs sampler to act as a generator and
samples negatives to confuse the discriminative model.
KBGAN [51] is an adversarial learning framework for
knowledge graph embedding models by training two
translation-based models. AdvIR [18] adds perturbation
into adversarial sampling to make the model more robust.

• Auxiliary-based Sampler leverages auxiliary information
(e.g. graph structure, social network, knowledge graph,
user’s exposure information) to sample informative neg-
ative instances. MCNS [19] proposes a theory to quan-
tify the role of negative sampling in graph representa-
tion learning and utilizes Metropolis Hastings to accel-
erate negative sampling according to graph structure.
SamWalker++ [52] extended the previous work [53], and
proposed an efficient random walk-based sampling strat-
egy along the pseudo-social network to draw informative
training instances. KGPolicy [54] developed a reinforce-
ment learning agent to explore high-quality negatives
over item knowledge graphs. Besides, the additional view
data is applied to sample negatives [31], [55]. RNS-AS [32]
utilized adversarial learning and exposure data to sample
negative items.

7 CONCLUSION

In this work, we study the problem of negative sampling
in graph-based recommendation. Different from the pre-
vious works which ignore sampled regions for negative
sampling, we propose the qualitative Three-Region Principle
to guide negative sampling. This principle suggests that we
should negatively sample more items at an intermediate
region. Based on this principle, we present an effective
negative sampling method called RecNS to sample hard
negative items, which contains two sampling strategies:
positive-assisted sampling and exposure-augmented sam-
pling. Instead of sampling existing negative items, RecNS
merge these two sampling strategies in embedding space
to generate the final negative item embeddings. We con-
duct experiments on three representative graph-based rec-
ommendation models and the results suggest that RecNS
can empower state-of-the-art graph-based recommendation
models to achieve significant performance improvements
over their default versions. In addition, the extensive exper-
iments between RecNS and other commonly-used negative
sampling methods are conducted, and the results show that
the superiority of RecNS.
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